

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Electrochemically active and robust cobalt doped copper phosphosulfide electro-catalysts for hydrogen evolution reaction in electrolytic and photoelectrochemical water splitting

Prasad Prakash Patel^a, Oleg I. Velikokhatnyi^{b,c}, Shrinath D. Ghadge^a, Prashanth J. Hanumantha^b, Moni Kanchan Datta^{b,c}, Ramalinga Kuruba^b, Bharat Gattu^a, Pavithra Murugavel Shanthi^a, Prashant N. Kumta^{a,b,c,d,e,*}

^a Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

^b Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

^c Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261, USA

^d Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh,

Pittsburgh, PA 15261, USA

^e School of Dental Medicine, University of Pittsburgh, PA 15217, USA

ARTICLE INFO

Article history: Received 15 December 2017 Received in revised form 21 February 2018 Accepted 22 February 2018 Available online 24 March 2018

Keywords: Hydrogen evolution reaction Water splitting Copper phosphide Phosphosulfide Sulfur doping

ABSTRACT

The area of non-noble metals based electro-catalysts with electrochemical activity and stability similar or superior to that of noble metal electro-catalyst for efficient hydrogen production from electrolytic and photoelectrochemical (PEC) water splitting is a subject of intense research. In the current study, exploiting theoretical first principles study involving determination of hydrogen binding energy to the surface of the electro-catalyst, we have identified the (Cu_{0.83}Co_{0.17})₃P: x at. % S system displaying excellent electrochemical activity for hydrogen evolution reaction (HER). Accordingly, we have experimentally synthesized (Cu_{0.83}Co_{0.17})₃P: x at. % S (x = 10, 20, 30) demonstrating excellent electrochemical activity with an onset overpotential for HER similar to Pt/C in acidic, neutral as well as basic media. The highest electrochemical activity is exhibited by (Cu_{0.83}Co_{0.17})₃P:30 at. % S nanoparticles (NPs) displaying overpotential to reach 100 mA cm⁻² in acidic, neutral and basic media similar to Pt/C. The (Cu_{0.83}Co_{0.17})₃P:30 at. % S NPs also display excellent electrochemical stability in acidic media for long term electrolytic and PEC water splitting process [using our previously reported $(Sn_{0.95}Nb_{0.05})$ O₂: N-600 nanotubes (NTs) as the photoanode]. The applied bias photon-tocurrent efficiency obtained using $(Cu_{0.83}Co_{0.17})_3P:30$ at. % S NPs as the cathode electrocatalyst for HER in an H-type PEC water splitting cell (~4%) is similar to that obtained using Pt/C (~4.1%) attesting to the promise of this exciting non-noble metal containing system. © 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ijhydene.2018.02.147

^{*} Corresponding author. Department of Bioengineering, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA. E-mail address: pkumta@pitt.edu (P.N. Kumta).

^{0360-3199/© 2018} Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Achieving sustainable, economic and clean energy supply by replacing hitherto technologies for energy production based on combustion of fossil fuels is one of the major energy related technological hurdles facing the globe today [1-6]. Incessant large dependence and consequent, vast consumption of fossil fuels has contributed to excessive emissions of greenhouse gases which has led to global climatic changes over the years placing significant stress on the environment [1–5]. Hence, at the risk of significantly compromising the environment, it is imperative to identify efficient, clean (low carbon footprint) and environmentally friendly energy sources that can be manufactured and produced in an economical fashion. This will enable the society to transition from an energy economy driven largely by fossil fuel based energy sources to noncarbonaceous fuels based economy with the aim of meeting the colossal global energy demand with minimum emission of greenhouse gases and thus, ensuring a sustainable society driven by environmental recyclable resources of solar, wind, and water [1,4,7-12]. Along these lines, hydrogen has been identified as the primary potential energy source due to its low carbon footprint, high energy density (120 MJ/kg for H2 higher than 44.4 MJ/kg for Gasoline) and the ability to offer clean, reliable and affordable energy supply for meeting the tremendous global energy demand [13]. In addition, hydrogen is an important chemical with a global production rate of 50 billion kg per year that is mainly used in petroleum refining and production of ammonia based fertilizers as well as other important industrial chemicals [14].

Current approaches for H_2 production mainly involve steam reforming of natural gas, coal gasification and the partial oxidation of hydrocarbons [15,16]. The drawbacks of these processes are high operating temperature and emission of CO₂, the undesired greenhouse gas pollutant [15,16]. With the increase in global demand of H_2 on the grounds of its important applications mentioned above, processing of vast amount of fossil fuels is not viable. Hence, it is of utmost importance to produce hydrogen from non-carbonaceous and environmentally friendly tools with minimum emission of greenhouse gases.

Electricity driven water splitting (water electrolysis coupled to renewable energy source such as solar, wind, etc.) and photoelectrochemical (PEC) water splitting (where electricity is generated from suitable semiconductor material used as the photoanode and then used in tandem to drive the HER to produce H₂ at the cathode) are promising approaches, as they involve production of hydrogen from noncarbonaceous sources with no emission of greenhouse gases whatsoever and no toxic byproducts [17,18]. In these processes, electricity is used for driving the water splitting reaction ($\Delta G^{\circ} = 237.13 \text{ kJ mol}^{-1}$ or 1.23 eV) [19]. However, one of the factors limiting the commercial development of electrolytic water splitting process is the high capital cost, mainly due to the use of expensive precious noble metal electro-catalysts (e.g. Pt, IrO₂) that albeit exhibit excellent electrochemical activity with minimum overpotential and long term electrochemical stability. The development of PEC water splitting systems is however, constrained by insufficient solar-tohydrogen (STH) efficiency and limited long term stability. Moreover, the use of noble metal electro-catalysts (Pt, Pd) could be a concern for future applications in PEC systems.

The development of novel non-noble metals based electrocatalyst exhibiting similar/superior electrochemical activity with minimum overpotential and stability than state of the art electro-catalyst (Pt/C) for hydrogen evolution reaction (HER), which constitutes half of the water splitting reaction, will be a significant breakthrough in reduction of capital cost of water splitting cells. In addition to proton exchange membrane (PEM) based water electrolysis and PEC water splitting involving operation in acidic media (pH~0), HER is also very important in the microbial electrolysis cell (MEC) which involves production of hydrogen from wastewater (neutral media, pH~7) through microbes assisted degradation of organic waste and electrolytic water splitting for generation of hydrogen in basic media (pH~14) [20]. An ideal non-noble metals based HER electro-catalyst should exhibit superior electrochemical active surface area, high electronic conductivity, superior charge transfer kinetics, high current density at low overpotential, excellent electrochemical activity for HER and superior long term electrochemical stability for continuous H₂ production over long period of operation in acidic, neutral as well as basic media.

In the pursuit of identification and development of cheap, highly electrochemically active and stable electro-catalysts for HER, there have been many pioneering studies reported on non-noble metals based nitride and sulfide based electrocatalysts exhibiting promising performance for HER such as MoS₂ [21,22], CoSe₂ [23], Co_{0.6}Mo_{1.4}N₂ [24], MoSe₂ [25], NiMoN_x [26], WS₂ [27], etc. Earth-abundant transition metal phosphides (TMPs) are also important materials exhibiting good electronic conductivity and are widely utilized as catalysts in hydrodesulfurization (HDS), hydrodenitrogenation as well as anode materials for Li ion batteries [28-32]. Both HDS and HER rely on reversible binding of hydrogen on the catalyst surface. In HDS, hydrogen dissociates on the catalyst surface and reacts with sulfur forming H₂S which creates a reactive sulfur vacancy site [14], while in HER, the protons bind to the electrocatalyst surface promoting HER and accordingly generating H₂ gas [28]. Thus, TMPs are also considered as active electrocatalysts for HER. On the basis of these developments, there has correspondingly been significant research efforts directed to the study of TMPs as electro-catalysts for HER such as Ni_2P [33,34], CoP [20,28,35,36], MoP [37], FeP [32,38], WP [39], WP₂ [40], etc., wherein, these electro-catalysts have shown noticeable electrochemical activity for HER.

With the principle aim of this study targeted at the design and development of cheap non-noble metals based electrocatalysts displaying similar/superior electrochemical activity for HER and stability than that of Pt/C, in this report we describe copper phosphide (Cu₃P) based electro-catalyst system that has been studied as a potential electro-catalyst for HER, on the grounds of promising HER performance displayed by self-supported Cu₃P nanowire arrays [41]. In the present study, therefore, theoretical first-principles electronic structure calculations involving determination of the hydrogen binding energy ($\Delta G_{H^{-}}$) to the surface of specific electrocatalysts, has been carried out to identify and develop suitable Cu₃P based electro-catalyst systems exhibiting excellent electrochemical activity for HER similar to that of noble metal electro-catalyst system (Pt). Based on the theoretical calculations, cobalt doped copper phosphosulfide denoted as $(Cu_{0.83}Co_{0.17})_3P$: x at. % S (x = 10, 20, 30) of different compositions have been explored as a suitable electrocatalyst system for HER, for the very first time and presented in this report to the best of our knowledge. Cobalt is selected as the preferred dopant for Cu₃P on the grounds of its ability to offer promotional effect in MoS_2 as reported earlier [42,43]. Thus, the incorporation of cobalt in Cu₃P is expected to offer increased number of catalytically active sites (due to a decrease in ΔG_{H^*}) resulting in improved catalytic activity (lower polarization losses) for HER, which is verified by the theoretical first-principles electronic structure calculations reported in this study [42-46]. The rationale for selection of sulfur is that the most active sites for TMPs in HDS reaction are considered to be phosphosulfide formed during the reaction and thus, sulfur is known to play an important role in improving the catalytic activity of metal phosphides for HDS [31,47,48]. Hence, sulfur is incorporated in Cu₃P to achieve electronic and molecular states similar to that seen during HDS operating conditions and thus, achieve excellent electrochemical activity for HER. In addition, incorporation of S into the Cu₃P lattice will offer improved electronic conductivity which will potentially also enable fast charge transfer kinetics. Thus, the simultaneous incorporation of Co and S into the Cu₃P lattice offers unique opportunity for tailoring the electronic structure, physical, electronic and electro-catalytic properties of Cu₃P to match the noble metal electro-catalyst systems. As a result, the $(Cu_{0.83}Co_{0.17})_3P$: x at. % S (x = 10, 20, and 30) has been explored for the first time in this report, to the best of our knowledge as the universal electro-catalyst system for HER in electrolytic water splitting encompassing all three acidic, neutral and basic media in this study.

In addition, (Cu_{0.83}Co_{0.17})₃P:S is also studied as HER electrocatalyst in PEC water splitting cell using (Sn_{0.95}Nb_{0.05})O₂:N-600 nanotubes (NTs) as the photoanode [8]. The photoelectrochemical characterization has been carried out in an Htype cell, in which the cathode (where HER occurs) and photoanode (where water oxidation reaction takes place) are separated by the Nafion 115 membrane (DuPont) [8]. As reported earlier by us [8], the maximum applied bias photon-tocurrent efficiency (ABPE) of ~4.1% was obtained using (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs as the photoanode and Pt (wire) as cathode at an applied potential of ~0.75 V (vs RHE), which is the highest ABPE obtained so far compared to other semiconductor materials studied as photoanode for PEC water splitting such as TiO₂, ZnO and Fe₂O₃ [8,10,49–52]. However, with the goal of completely replacing Pt with novel non-noble metals based electro-catalyst exhibiting excellent electrochemical activity for HER and stability similar/superior than that of Pt/C, the $(Cu_{0.83}Co_{0.17})_3$ P:S system is also studied herein as the HER electro-catalyst to achieve similar/superior ABPE than that of Pt/C. This combined approach will help in progressing towards non-noble metals based electro-catalysis which will result in significant reduction in the capital cost of electrolytic and PEC water splitting system and thus, likely aid in their commercial development for efficient and economic production of hydrogen in environmentally friendly manner. This is indeed a very relevant and represents an important part of today's intense research activity which will offer massive environmental, economic and technological benefits in the short as well as long term.

Thus, the present report documents for the first time the theoretical and experimental studies focused on detailing the electrochemical performance of nanostructured cobalt doped copper phosphosulfide system, i.e., $(Cu_{0.83}Co_{0.17})_3P$: x at. % S (x = 10, 20, 30) of different compositions serving as cathode electro-catalysts for HER in electrolytic and photo-electrochemical water splitting [using our previously reported (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs as the photoanode], synthesized using a simple synthesis route at low temperature of 250 °C.

Computational methodology and details

The electro-catalytic activity of an electro-catalyst can be described by a parameter, ΔG_{H^*} which is the free energy of adsorbed hydrogen atom on the electro-catalyst surface. ΔG_{H^*} is desired to be close to 0 eV, which indicates the ease of adsorption and desorption of hydrogen atoms from the electro-catalyst surface [53–55]. ΔG_{H^*} is represented by the following relation: $\Delta G_{H^*} = \Delta E_{H^*} + \Delta ZPE - T\Delta S$. The reaction energy ΔE_{H^*} is calculated using the density functional theory methodology (DFT) as following:

 $\Delta E_{H^*} = E(Mat + nH) - E(Mat + (n-1) H) - 1/2 E(H_2),$

where E(Me + nH) is the total energy of a metal surface slab with the n hydrogen atoms adsorbed on the surface, E(Me + (n-1)H) is the total energy of the corresponding metal surface slab with (n-1) hydrogen atoms (after removal of one hydrogen atom from the given site) and $E(H_2)$ is the total energy of the hydrogen molecule in the gas phase.

Cu₃P has a hexagonal crystal structure P6₃cm (group# 185) with 24 atoms in the unit cell with the following lattice parameters: a = b = 6.959 Å and c = 7.143 Å [56]. For estimation of ΔE_{H^*} , the crystallographic surface (0001) has been chosen with the active sites located above Cu 4b-type of the lattice sites as shown in Fig. 1a. Co and S atoms are also shown in this figure. In all the calculations, 1 monolayer of H-coverage of the (0001) surface has been considered. Also, the zero point energy correction ΔZPE minus the entropy term T ΔS has been taken equal to 0.24 eV, as it was used by Nørskov et al. [55], for calculations of ΔG_{H^*} for all materials considered in that study.

All the surface slabs consist of five cupper and two phosphorus layers with fixed three lower copper and one phosphorus layers with the lattice parameters corresponding to the calculated bulk crystal structures. The remaining three top layers were allowed to relax together with all the adsorbed hydrogen atoms on the surface. The slab was separated from its image by a vacuum layer of ~20 Å. Since, the purpose of the present theoretical study is to bring to light the effects of Co and S elements on the overall catalytic activity of Cu₃P, only one composition of each dopant has been chosen for the calculation of ΔG_{H^*} and other properties of the corresponding compounds. Thus, accordingly, the free energies of hydrogen adsorption to the surface have been calculated for pure Cu₃P, (Co_{0.17}Cu_{0.83})₃P and (Co_{0.17}Cu_{0.83})₃P_{0.5}:S_{0.5} compositions. These

Fig. 1 – (a) Surface slab of Cu_3P structure doped with Co and S. Red box is the unit cell used in all DFT calculations. Small blue balls – Cu, small green – Co, large yellow – P, large orange – S, the smallest black – hydrogen atoms attached to the surface on active sites. Vectors *a*, *b*, and c correspond to the bulk crystal structure lattice parameters, (b) Calculated total density of electronic states for pure Cu_3P , $(Co_{0.17}Cu_{0.87})_3P$, and $(Co_{0.17}Cu_{0.87})_3P_{0.5}$:S_{0.5}; Fermi level is set to zero energy. Labels indicate major contributions from corresponding projected electronic states. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

compositions have been chosen from the crystallographic consideration of the Cu_3P elementary unit cell.

In the present study for all the DFT calculations, the Vienna Ab-initio Simulation Package (VASP) has been used within the projector-augmented wave [57] method [58–60] and the generalized gradient approximation for the exchangecorrelation energy functional in a form suggested by Perdew and Wang [61]. This program calculates the electronic structure and via the Hellmann-Feynman theorem, the interatomic forces are determined from first-principles. The standard PAW potentials were employed for the Cu, Co, P, and S potentials containing eleven, nine, five, and six valence electrons, respectively.

For all the materials considered in this study, the plane wave cutoff energy of 520 eV has been chosen to maintain a high accuracy of the total energy calculations. The lattice parameters and internal positions of atoms were fully optimized employing the double relaxation procedure and consequently, the minima of the total energies with respect to the lattice parameters and internal ionic positions have been determined. This geometry optimization was obtained by minimizing the Hellman-Feynman forces via a conjugate gradient method, so that the net forces applied on every ion in the lattice are close to zero. The total electronic energies were converged to within 10^{-5} eV/un cell resulting in the residual force components on each atom to be lower than 0.01 eV/ Å/atom thus, allowing for an accurate determination of the internal structural parameters for the material. The Monkhorst-Pack scheme was used to sample the Brillouin Zone (BZ) and generate the k-point grid for all the materials considered in the present study.

Results and discussion

Theoretical study illuminating the effect of Co and S on the electrochemical activity and structural stability of the selected (Cu,Co)₃P:S compounds

The electro-catalytic activity of virtually any electro-catalyst is expected to depend on the electronic structure as well as the electronic conductivity, while the long term stability of the electro-catalyst is assumed to qualitatively depend on the cohesive energy of the system. The effect of compositions on the electronic and catalytic properties as well as the compositional effects on the structural stability of the material could be understood from the theoretical considerations.

As mentioned in earlier section of the manuscript, the main purpose of the computational component of the present study is to explore the effects of Co and S dopants on the electro-catalytic activity as well as the structural and chemical stability of Cu₃P during HER. For these purposes the electronic structure, hydrogen adsorption free energies ΔG_{H^*} as well as the cohesive energies have been considered as a qualitative measure of the structural and chemical stability, and they have all been calculated for the different materials considered in the current study.

It should be noted that for a good HER electro-catalyst, it is essential that the free energy of adsorbed H (ΔG_{H^*}) should be close to 0 such that the hydrogen atoms would be able to easily adsorb and desorb from the surface during HER. Thus, the task of identifying a good electro-catalyst material for HER could partially be reduced to estimation of the free binding energy of Table 1 – Calculated free energy of hydrogen adsorption $\Delta G_{\rm H}$, the electronic density of states at the Fermi level, and cohesive energy - $E_{\rm coh}$ for all materials considered in the present study.

1 2			
Materials	ΔG _{H*} (in eV)	N(E _F) el./eV/ unit cell	-E _{coh} (in eV/f.unit)
Cu₃P	0.31	1.5	13.96
(Co _{0.17} Cu _{0.83}) ₃ P	0.16	10.1	14.94
(Co _{0.17} Cu _{0.83}) ₃ P _{0.5} :S _{0.5}	0.10	11.7	14.48

the hydrogen to the electro-catalytic surface. Modification of the electro-catalytic surface electronic structure by changing the chemical composition in such a way that the resulting ΔG_{H^*} becomes close to zero, may also substantially improve the electro-catalytic activity of the material. For these purposes therefore, the hydrogen binding free energy (ΔG_{H^*}) has been obtained from DFT calculations by subtracting the free energy of the pristine electro-catalyst surface and a half of a hydrogen molecule in the gas phase from the corresponding free energy of the electro-catalyst surface with hydrogen atom bonded to the site. The methodology is very similar to that presented by Nørskov et al. in previous report [55].

Table 1 shows a tabulation of the free energies ΔG_{H^*} , density of states at the Fermi level, and cohesive energies for all the different materials considered in the present study. It can be seen that the hydrogen adsorption to the surface of pure Cu_3P is too weak and quite far from the optimal value resulting in an inferior expected electro-catalytic activity for HER. It may be explained from the electronic structure consideration that since Cu-3d electrons locate relatively deep below the Fermi level the hybridization between these electrons and H-1s states located above the Fermi level becomes very weak thus, making adsorption of hydrogen atoms practically impossible (Fig. 1b).

An introduction of Co into the Cu₃P lattice substituting for Cu decreases ΔG_{H^*} noticeably bringing its value toward the more optimal energy value. In this case, new Co-3d electronic states are created locating in the vicinity of the Fermi level and hybridize with H-1s electrons more strongly resulting in stronger interaction between hydrogen atoms and the material's surface. Such a modification of the electronic structure is expected to improve the electro-catalytic activity of the electrocatalyst (Fig. 1b). Further substitution of phosphorus for sulfur in (Cu,Co)₃P results in the hydrogen adsorption energy being even more close to the zero value of ~0.1 eV. This indicates a further increase in the strength of the hydrogen-surface interaction due to the stronger H-S bonds compared to the H-P bonds (bond dissociation energies for diatomic molecules are 353.6 kJ mol⁻¹ vs. 297.0 kJ mol⁻¹ respectively [62]. This effect of the sulfur addition is expected to noticeably further improve the electro-catalytic activity of (Cu,Co)₃P:S compound. Thus, using the concept of the free energy of the hydrogen adsorption to the electro-catalytic surface, the present study has shown positive effect of introduction of Co and S on the expected catalytic activity of Cu₃P electrocatalyst for HER.

Another goal of the present study as outlined earlier is to investigate the effect of Co and S doping on the electronic conductivity of Cu₃P. Since, in general the metallic conductivity is proportional to the density of states at the Fermi level $N(E_{\rm F})$, it provides an opportunity to qualitatively estimate the influence of those dopants on the overall electronic conductivity of Cu₃P. The electronic structure of Cu₃P calculated in the present study demonstrates slight metal-type conductivity with non-zero density of the electronic states at the Fermi level (Fig. 1b) which is opposite to the experimental data indicating this material is a semiconductor with a narrow band gap ~0.8 eV between the valence and conduction electronic zones [63]. This discrepancy with experimental data attributes to the inherent inability of the DFT methodology to reproduce correctly the band gaps of insulators and semiconductors with the well-known tendency of DFT to underestimate the corresponding band gap energy values on average by 30-50%. Also, some materials with narrow band gaps may very well be presented as metal-type conductors. Nevertheless, in the case of Cu_3P , the value of $N(E_F)$ is very small indicating poor electronic conductivity of the compound. The introduction of Co into the system however, changes the electronic structure in such a way that the presence of Co-3d electrons in the vicinity of the Fermi level increases the number of electrons and thus, improves the overall electronic conductivity of the material (Fig. 1b). An additional introduction of S into the (Cu,Co)₃P lattice by substituting for P atoms further improves the conductivity (Fig. 1b), since sulfur atoms bind to lower number of Cu valence electrons than phosphorus atoms (2 instead of 3 electrons for each S atom) rendering some of Cu valence electrons readily available in the system and thus increasing the number of total charge carriers at the Fermi level, as indicated in Table 1. Such an increase in the electronic conductivity also positively contributes to the overall electrocatalytic activity of the material along with hydrogen adsorption energy to the surface of the doped material.

The last aspect to be highlighted in the present theoretical study is the structural and electrochemical stability of the system for which the cohesive energy E_{coh} can be considered as a qualitative indicator. The higher the E_{coh} (the more negative value), the more durable is the electro-catalyst material and thus, can be expected to display long term stability and durability when considered over the entire duration of the long term HER electro-catalytic process. Ecoh calculated for all the materials are collected in Table 1. It can be again seen that an introduction of Co into the Cu₃P lattice substantially improves the overall stability of $(Co_{0.17}Cu_{0.83})_3P$ due to the presence of much stronger Co-P bonds in comparison to Cu-P [calculated E_{coh} for pure Cu₃P is -13.96 eV/f.un. vs. -14.94 eV/ f.un. for $(Co_{0.17}Cu_{0.83})_3P$]. However, further introduction of S into the (Co_{0.17}Cu_{0.83})₃P compound results in relative lowering of the cohesive energy that occurs mainly due to the lower ionic charge of S^{2-} vs. P^{3-} and thus, leads to significantly weakening the electrostatic component of Cu-S and Co-S bonds than those of Cu-P and Co-P ionic bonds. Nevertheless, even the relatively less stable (Co_{0.17}Cu_{0.83})₃P_{0.5}:S_{0.5} compound is more stable than pure Cu₃P, which makes this material likely more stable and capable of withstanding the harsh electrochemical conditions during HER as validated by the experimental results discussed in the sections to follow.

Thus, based on the results of the DFT study, $(Cu,Co)_3P:S$ is expected to demonstrate improved electro-catalytic activity due to quite optimal hydrogen adsorption energy and high

Fig. 2 – (a) The XRD patterns of pure Cu₃P nanopartciles (NPs), (Cu_{0.83}Co_{0.17})₃P NPs and (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration in wide angle 2 θ scan, (b) The bright field TEM image of (Cu_{0.83}Co_{0.17})₃P:30S NPs, (c) SEM micrograph with EDX spectrum of (Cu_{0.83}Co_{0.17})₃P:30S NPs, (d) Elemental x-ray maps of (Cu_{0.83}Co_{0.17})₃P:30S NPs.

electronic conductivity together with good structural and chemical stability which altogether make this material a likely good candidate for demonstrating structural stability and high electro-catalytic performance response suitable for HER. The theoretical results presented here are accordingly experimentally verified by synthesizing and characterizing different compositions of $(Cu_{0.83}Co_{0.17})_3P$: x at. % S (x = 10, 20, 30) corresponding to different S concentrations to systematically study and illustrate the effect of different S concentrations on the electrochemical properties of $(Cu_{0.83}Co_{0.17})_3P$:S that are further discussed in the following sections of the manuscript.

Synthesis and characterization of theoretically predicted $(Cu_{0.83}Co_{0.17})_3P$ nanoparticles (NPs) and $(Cu_{0.83}Co_{0.17})_3P$:x at.% S NPs (x = 10, 20, 30) compositions for HER

Structural characterization of Cu_3P , $(Cu_{0.83}Co_{0.17})_3P$ and $(Cu_{0.83}Co_{0.17})_3P$:x at.% S NPs (x = 10, 20, 30)

The XRD pattern of the pure Cu_3P NPs (Fig. 2a) synthesized by heat treatment of CuCl₂.2H₂O and NaH₂PO₂·xH₂O in UHPargon atmosphere at 250 °C and subsequent water-wash shows a hexagonal structure (JCPDS card no: 71-2261) with lattice parameters, a = b = 0.6959 nm, c = 0.7413 nm and a molar volume (V_m) ~31.2 cm³ mol⁻¹, which is in good agreement with the literature value [64]. The XRD patterns of (Cu_{0.83}Co_{0.17})₃P NPs and (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration, shown in Fig. 2a, show peaks corresponding to single phase hexagonal structure similar to that of Cu₃P without any other peaks of undesired secondary phase. This suggests incorporation of Co and S in lattice of Cu3P for (Cu_{0.83}Co_{0.17})₃P:S NPs of different composition. The lattice parameters and molar volume of (Cu_{0.83}Co_{0.17})₃P NPs and (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration (calculated using the least square refinement technique) are given in Table 2.

The lattice parameters and molar volume of $(Cu_{0.83}Co_{0.17})_3P$ NPs are slightly lower than that of pure Cu_3P NPs which can be due to the smaller ionic radius of cobalt ion than that of copper ion [65]. However, there is a slight increase in the lattice parameters and molar volume of (Cu_{0.83}Co_{0.17})₃P:S NPs in comparison to pure Cu₃P NPs and (Cu_{0.83}Co_{0.17})₃P NPs. The lattice parameters and molar volume of (Cu_{0.83}Co_{0.17})₃P:S NPs increase slightly with increase in S concentrations indicating the slight lattice expansion upon incorporation of S which is similar to earlier reports [66,67]. The TEM bright field image of the representative composition of (Cu_{0.83}Co_{0.17})₃P:30S NPs, shown in Fig. 2b, shows that the nanoparticles are in the range of ~7-10 nm. The HRTEM image (Fig. 2b) shows lattice fringes with a spacing of ~0.27 nm which corresponds well with the (112) inter-planer spacing of Cu₃P and indicates lattice expansion which is in agreement with the XRD analyses which is similar to earlier reports [66-68]. The SEM image along with the EDX pattern of the same representative composition (Cu_{0.83}Co_{0.17})₃P:30S NPs, is shown in Fig. 2c. The EDX pattern confirms the presence of Cu, Co, S and P in (Cu_{0.83}Co_{0.17})₃P:30S NPs (Fig. 2c). The quantitative elemental composition analysis (from EDX) of (Cu_{0.83}Co_{0.17})₃P:30S NPs shows the measured elemental composition of Cu, Co, S and P to be close to the nominal composition (Fig. 2c). Elemental xray maps of Cu, Co, S and P, shown in Fig. 2d, indicates a homogeneous distribution of elements in the representative composition of (Cu_{0.83}Co_{0.17})₃P:30S NPs with no evidence of any segregation at any specific site.

Chemical oxidation states of Cu, Co, S and P were also studied using x-ray photoelectron spectroscopy (XPS) analysis performed on NPs of pure Cu₃P and (Cu_{0.83}Co_{0.17})₃P:30S NPs, respectively. The XPS spectrum in the Cu $2p_{3/2}$ region for pure Cu₃P NPs shows a peak ~932.9 eV (Fig. 3a), which is similar to earlier report [41]. The XPS spectrum in the P 2p region for pure Cu₃P NPs, shown in Fig. 3b, shows two peaks at ~129.5 eV and ~133.8 eV. The peak at ~932.9 eV in the Cu $2p_{3/2}$ region and the peak at ~129.5 eV correspond to binding energies of Cu and P in pure Cu₃P NPs [41,69]. The peak at ~133.8 eV in the P 2p region corresponds to oxidation of P related to presence of (PO₄³⁻) forming possibly owing to air exposure during handling of pure Cu₃P NPs (Fig. 3b) [14]. It is noteworthy to note that the peak at ~932.9 eV in the Cu $2p_{3/2}$ region of pure Cu₃P NPs reflects higher binding energies than that of metallic Cu

Fig. 2 – (continued).

(~932.6 eV) [70] and the peak at ~129.5 eV in P 2p region of pure Cu₃P NPs is at a lower binding energies than that of elemental P (~130.2 eV) [69], respectively. This indicates presence of Cu (metal centers) with positive partial charge (δ^+) and P (pendant bases) with negative partial charge (δ^-) close to metal center and thus, suggesting transfer of electrons from Cu to P and modification of the charge density of Cu and P in pure Cu₃P NPs [20]. There is also a positive shift of ~0.5 eV seen in peak in the Cu 2p_{3/2} region for (Cu_{0.83}Co_{0.17})₃P:30S NPs, which can possibly be due to transfer of electrons from Cu to S and correspondingly, modification of the charge density of phos-phosulfide (Fig. 3a) [67]. The XPS spectrum of (Cu_{0.83}Co_{0.17})₃P:30S NPs in the P 2p region shows only one peak at ~129.5 eV corresponding to P in Cu₃P [69] or CoP [71] (Fig. 3b). However, the peak corresponding to oxidized P (at ~133.8 eV

which is seen for pure Cu_3P as discussed earlier) arising due to air exposure of the phosphide material during handling is absent for $(Cu_{0.83}Co_{0.17})_3P$:30S NPs (Fig. 3b) which can be due to likely stabilization of phosphide towards oxidation following the incorporation of S in the phosphide (as also seen earlier [14,71]). The exact reason is unknown at present warranting further study.

The XPS spectrum in the Co $2p_{3/2}$ region for $(Cu_{0.83}Co_{0.17})_3P$:30S NPs, shown in Fig. 3c, shows a peak at ~779.5 eV (which corresponds to Co in CoP [28]) is shifted by ~0.3 eV to higher binding energy than that of the typical peak (at ~779.2 eV) in the Co $2p_{3/2}$ region of CoP [28], which can be due to transfer of electrons from Co to S [67]. The peak at ~779.5 eV in Co $2p_{3/2}$ region of $(Cu_{0.83}Co_{0.17})_3P$:30S NPs (Fig. 3c) is also at higher binding energies than that of metallic Co

(Cu _{0.83} Co _{0.17}) ₃ P:S NPs and Pt/C in 0.5 M H ₂ SO ₄ electrolyte solution at 26 °C.											
Electro-	Lattice	Molar volume (cm ³ mol ⁻¹)	Onset over potential (mV, RHE)	Overpotential (mV, RHE) to reach		Current	R _{ct}				
catalyst	parameter (nm)			10 mA cm ⁻²	20 mA cm ⁻²	100 mA cm ⁻²	density at (–0.05V) (mA cm ^{–2})	(Ω.cm ²)			
Cu₃P	a = b = 0.6959, c = 0.7413	31.20	190	519	813	>1048	0.01	65.29			
(Cu _{0.83} Co _{0.17}) ₃ P	a = b = 0.6958, $c = 0.7411$	31.19	80	237	363	>809	0.085	31.3			
(Cu _{0.83} Co _{0.17}) ₃ P:10S	a = b = 0.696, c = 0.7414	31.22	10	97	155	>567	3.19	21.29			
(Cu _{0.83} Co _{0.17}) ₃ P:20S	a = b = 0.6962, c = 0.7415	31.24	10	52	70	185	8.67	10.31			
(Cu _{0.83} Co _{0.17}) ₃ P:30S	a = b = 0.6963, c = 0.7417	31.26	10	46	58	105	17.2	7.00			
Pt/C	-	_	10	43	51	95	17.6	6.32			

Table 2 – Results of structural and electrochemical characterization for HER of pure Cu_3P NPs, $(Cu_{0.83}Co_{0.17})_3P$ NPs, $(Cu_{0.83}Co_{0.17})_3P$ SNPs and Pt/C in 0.5 M H₂SO₄ electrolyte solution at 26 °C.

(~778.4 eV) [28] and the peak at ~129.5 eV in the P 2p region of $(Cu_{0.83}Co_{0.17})_3P$:30S NPs (Fig. 3b) is at lower binding energies than that of elemental P (~130.2 eV) [69], respectively. Similar to the discussion above for pure Cu₃P NPs, this also suggests the presence of Co (metal centers) with positive partial charge (δ^+) and P and S (pendant bases) with negative partial charge (δ^-) close to metal center and thus, implying transfer of electrons from Co to P and S in $(Cu_{0.83}Co_{0.17})_3P$:30S NPs and possible modification of the resulting charge density.

The XPS spectrum of (Cu_{0.83}Co_{0.17})₃P:30S NPs in the S 2p region (Fig. 3d) shows one peak at ~161 eV corresponding to the sulfide (S²⁻) showing no presence of any oxidized sulfur species such as sulfate (whose peak appears in S 2p_{3/2} region at ~168 eV) [72,73]. The proton relays are incorporated in a metal complex electro-catalyst for HER arising from the pendant acid-base groups which are present close to the metal center where the HER is known to occur [20,74,75]. The active sites for metal complex hydrogenase enzyme also have pendant bases which are close to the metal centers [20,76]. The (Cu_{0.83}Co_{0.17})₃P:30S NPs considered in this study exhibit metal centers Cu, Co (δ^+) and pendant bases P, S (δ^{-}) positioned close to the metal centers [20]. Thus, (Cu_{0.83}Co_{0.17})₃P:30S NPs considered herein is expected to exhibit hydrogen evolution mechanism for HER similar to that of the metal complex hydrogenase enzyme reported [20]. Accordingly, Cu, Co and P, S in (Cu_{0.83}Co_{0.17})₃P:30S NPs can offer hydride-acceptor and proton-acceptor centers, respectively [20]. These results collectively thus, show modification of the electronic structure of Cu₃P due to incorporation of Co and S into the lattice of the parent phosphide, Cu₃P which can likely result in a more catalytically active phase offering superior electrochemical response compared to that of pure Cu₃P NPs.

Electrochemical characterization of Cu_3P , $(Cu_{0.83}Co_{0.17})_3P$ and $(Cu_{0.83}Co_{0.17})_3P$:x at % S NPs (x = 10, 20, 30) compositions for HER in electrolytic water splitting

The electrochemical activity of Cu₃P, $(Cu_{0.83}Co_{0.17})_3P$ and $(Cu_{0.83}Co_{0.17})_3P$:S NPs of different S concentration has been studied by performing linear scan voltammetry in 0.5 M H₂SO₄ electrolyte solution at 26 °C using a total loading of 0.7 mg cm⁻². The iR_Ω corrected LSV curves of commercial Pt/C (Pt loading = 0.4 mg_{Pt} cm⁻²) and Ti foil (current collector) are shown in Fig. 4a. The Ti foil (current collector) as expected

shows very poor electrochemical activity for HER and thus, has minimal contribution to the current density obtained in comparison to other active electro-catalysts used in this study. The onset of HER starts at ~80 mV (vs RHE) for (Cu_{0.83}Co_{0.17})₃P NPs which is lower than that of pure Cu₃P NPs (~190 mV vs RHE that is similar to earlier report [41]) (Table 2). This clearly suggests a reduction in the reaction polarization [7,9,11] due to the incorporation of cobalt into the Cu₃P lattice which is in agreement with the results of theoretical study discussed earlier (Fig. 1). Following incorporation of sulfur for all the compositions considered in the current study, the NPs of the (Cu_{0.83}Co_{0.17})₃P:S system all show excellent performance for HER with an onset overpotential of ~10 mV (vs RHE). This response is not only similar to that of commercial Pt/C (Fig. 4a and Table 2) but also significantly lower than that of pure Cu₃P NPs (~190 mV vs RHE). Thus, simultaneous incorporation of S and Co into the Cu₃P lattice offers significant reduction in the onset overpotential of HER to the extent of ~180 mV (significantly reduced reaction polarization) and also offers reaction polarization similar to that of commercial Pt/C (similar onset overpotential). These results correlate well with results of theoretical study (discussed earlier) which predicts a minimum reaction polarization for (Cu_{0.83}Co_{0.17})₃P:S than that of pure Cu₃P, due to the modification of the electronic structure following the simultaneous incorporation of Co and S into the Cu₃P lattice. It is also important to note that the onset overpotential for HER (~10 mV vs HER) obtained in this study for (Cu_{0.83}Co_{0.17})₃P:30S NPs is the lowest onset overpotential obtained for HER thus far in the published open literature to date, compared to other reported non-noble metals based HER electro-catalysts, to the best of our knowledge (Table S1). This shows the excellent promise of Co and S acting as effective dopants in improving the electrochemical activity of the parent phosphide, Cu₃P.

Nanoparticles (NP) of $(Cu_{0.83}Co_{0.17})_3P$ exhibit current density of ~0.085 mA cm⁻² at (-0.05 V vs RHE, which is a finite potential required to overcome overpotential losses near 0V, standard potential of HER), the standard representative potential selected following literature reports for measuring electrochemical activity for HER [20,32,34,77–83]. which is eight-fold higher than that of pure Cu₃P NPs (-0.01 mA cm⁻²) (Fig. 4a and Table 2). Additionally, (Cu_{0.83}Co_{0.17})₃P NPs show an overpotential of (>809 mV) (vs RHE) to reach a current density

Fig. 3 – The XPS spectra of pure Cu_3P NPs and $(Cu_{0.83}Co_{0.17})_3P$:30S NPs in the (a) $Cu_{2p_{3/2}}$ region, (b) P 2p region, (c) Co $2p_{3/2}$ region (d) S 2p region.

of 100 mA cm⁻² which is lower than that of pure Cu₃P NPs showing an overpotential of (>1048 mV) (us RHE) to reach the current density of 100 mA cm⁻², respectively (Fig. 4a and Table 2). This improvement in overpotential is mainly due to ~110 mV lower onset overpotential (lower reaction polarization) and improved reaction kinetics (lower activation polarization [7,9,11], also confirmed by the Electrochemical Impedance Spectroscopy (EIS) analysis discussed later) of $(Cu_{0.83}Co_{0.17})_{3}P$ NPs (onset overpotential = ~80 mV vs RHE) than that of pure Cu_3P NPs (onset overpotential = ~190 mV vsRHE) (Fig. 4a and Table 2). However, despite this improvement, the current density of the (Cu_{0.83}Co_{0.17})₃P NPs at (-0.05 V vs RHE) (~0.085 mA cm⁻²) is ~99.5% lower than that of Pt/C (~17.6 mA cm^{-2}) and correspondingly, the overpotential required to reach the current density of 100 mA cm⁻² is higher than that of commercial Pt/C which shows an overpotential of ~95 mV (vs RHE, similar to earlier reports [20,32,34,78-83]) to reach the identical current density of 100 mA cm⁻², respectively (Fig. 4a and Table 2). This is mainly due to ~70 mV higher onset overpotential and poor reaction kinetics of $(Cu_{0.83}Co_{0.17})_{3}P$ NPs than that of commercial Pt/C (Fig. 4a and Table 2).

It is also important to note that the NPs in the $(Cu_{0.83}Co_{0.17})_3P$: S system exhibit almost two-orders of

magnitude higher current density at (-0.05 V vs RHE) than that of pure Cu₃P NPs and the Co doped phosphide, (Cu_{0.83}Co_{0.17})₃P NPs (Fig. 4a and Table 2). This result is indeed in agreement with the results of the theoretical study (as discussed above) and is a reflection of the significant reduction in reaction polarization and possibly lower activation polarization for (Cu_{0.83}Co_{0.17})₃P:S than that of pure Cu₃P. The current density at (-0.05 V vs RHE) for the NPs of the $(Cu_{0.83}Co_{0.17})_3P$: S system increases with increase in S dopant concentration with the highest current density value obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs (~17.2 mA cm⁻²) (Fig. 4a and Table 2). In addition, the overpotential required to reach the current density of 100 mA cm⁻² for all of the sulfur doped (Cu_{0.83}Co_{0.17})₃P:S NPs decreases with increase in S concentration with the lowest value of 105 mV obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs (Fig. 4a and Table 2). Thus, despite the onset overpotential of (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration being same (~10 mV vs RHE), the increase in electrochemical activity of the sulfur doped (Cu_{0.83}Co_{0.17})₃P:S NPs with increase in S concentration with the highest activity displayed by (Cu_{0.83}Co_{0.17})₃P:30S NPs indicates improvement in reaction kinetics (decrease in activation polarization) with increase in S with concentration the highest obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs. The sulfur doped composition of

Fig. 4 – (a) The iR_{Ω} corrected linear scan voltammogram (LSV) curves for HER of pure Cu₃P NPs, (Cu_{0.83}Co_{0.17})₃P NPs, (Cu_{0.83}Co_{0.17})₃P NPs of different S concentration, Ti foil (current collector) and commercial Pt/C, obtained in 0.5 M H₂SO₄ electrolyte solution at 26 °C using scan rate of 1 mV s⁻¹, (b) EIS spectra of (Cu_{0.83}Co_{0.17})₃P NPs, (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration and commercial Pt/C obtained at (-0.05 V vs RHE) in 0.5 M H₂SO₄ electrolyte solution at 26 °C in the frequency range of 100 mHz to 100 kHz (Amplitude = 10 mV), (c) EIS spectrum of Cu₃P NPs obtained at (-0.05 V vs RHE) in 0.5 M H₂SO₄ electrolyte solution at 26 °C in the frequency range of 100 mHz to 100 kHz (Amplitude = 10 mV), (c) EIS spectrum of Cu₃P NPs obtained at (-0.05 V vs RHE) in 0.5 M H₂SO₄ electrolyte solution at 26 °C in the frequency range of 100 mHz to 100 kHz (Amplitude = 10 mV), (c) EIS spectrum of Cu₃P NPs obtained at (-0.05 V vs RHE) in 0.5 M H₂SO₄ electrolyte solution at 26 °C in the frequency range of 100 mHz to 100 kHz (Amplitude = 10 mV), (c) EIS spectrum of Cu₃P NPs obtained at (-0.05 V vs RHE) in 0.5 M H₂SO₄ electrolyte solution at 26 °C in the frequency range of 100 mHz to 100 kHz (Amplitude = 10 mV).

(Cu_{0.83}Co_{0.17})₃P:30S NPs show a current density of ~17.2 mA cm⁻² at (-0.05 V vs RHE) and overpotential of ~105 mV (vs RHE) to reach the current density of 100 mA cm⁻², which is almost comparable to that of Pt/C (Fig. 4a and Table 2). Thus, the sulfur doped composition of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs display outstanding electrochemical performance for HER, almost comparable to that of commercial Pt/C (Fig. 4a and Table 2) which is due to similar reaction polarization and similar activation polarization for $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and commercial Pt/C. It is noteworthy that the overpotential of ~105 mV (vs RHE) shown by $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs to reach current density of 100 mA cm⁻² in acidic media in this study is the lowest obtained so far compared to other reported nonnoble metals based HER electro-catalysts, to the best of our knowledge (Table S1).

All of the NPs in the $(Cu_{0.83}Co_{0.17})_3P$: S show excellent electrochemical performance, even in neutral and basic media. The iR_Ω corrected LSV curves of $(Cu_{0.83}Co_{0.17})_3P$:S NPs and Pt/C in 1 M potassium phosphate buffer (pH 7) and 1 M KOH (pH 14) are shown in Figs. S1 and S2 (Supporting information), respectively. It is clearly noticeable that all of the NPs in the $(Cu_{0.83}Co_{0.17})_3P$: S system show similar onset overpotential (similar reaction polarization) for HER as that of commercial Pt/C (~10 mV vs RHE) in both neutral and basic media (Table S2 and Table S3). The current density at (-0.05 V vs RHE), the potential selected to overcome overpotential losses near 0V standard potential of HER and once again following literature reports as accepted standard for electrochemical activity for HER [20,32,34,77–83] for all of the NPs in the $(Cu_{0.83}Co_{0.17})_3P$: S system increases with increase in S concentration with the highest values of 5.1 mA cm⁻² and 3.55 mA cm⁻² obtained for $(Cu_{0.83}Co_{0.17})_3P$:30S NPs in both neutral and alkaline pH, respectively. Correspondingly, the overpotential required to reach the current density of 100 mA cm⁻² for all the NPs in the $(Cu_{0.83}Co_{0.17})_3P$: S system decreases with increase in S concentration and the lowest values of 382 mV and 540 mV in neutral and alkaline pH, respectively obtained for (Cu_{0.83}Co_{0.17})₃P: 30S NPs in both neutral and basic media (Fig. S1-S2, Table S2 and Table S3 in Supporting information). Thus, the electrochemical activity for HER of NPs in the (Cu_{0.83}Co_{0.17})₃P: S system increases with increase in S concentration in both neutral and basic media similar to the acidic media with the highest response obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs in both neutral and basic media. As mentioned above, the (Cu_{0.83}Co_{0.17})₃P:30S NPs show excellent performance for HER in neutral media with current density at (-0.05 V vs RHE) (~5.1 mA cm⁻²) and the overpotential (~382 mV vs RHE) required to reach current density of 100 mA cm⁻² both of which are almost comparable to that of commercial Pt/C (~5.3 mA $\rm cm^{-2}$ at -0.05 V vs RHE and overpotential of ~330 mV vs RHE; similar to earlier reports [32]) (Fig. S1 and Table S2). Additionally, in basic media, the (Cu_{0.83}Co_{0.17})₃P:30S NPs exhibit excellent electrochemical activity for HER with current density at (-0.05 V vs RHE) (~3.55 mA cm⁻²) and similarly, the overpotential required to reach current density of 100 mA cm⁻² comparable to that of commercial Pt/C (~3.8 mA cm⁻² at -0.05 V vs RHE) (Fig. S2 and Table S3). It is also noteworthy to note that the overpotential shown by (Cu_{0.83}Co_{0.17})₃P:30S NPs to reach current density of 100 mA cm⁻² in both, neutral and basic media reported in this study is the lowest obtained so far compared to other reported non-noble metals based HER electro-catalysts, to the best of our knowledge (Table S4 and Table S5). The above results clearly suggest that the introduction of Co and S as co-dopants in the Cu₃P lattice offer a synergistic alteration of the electronic, atomic/molecular structure (which is in agreement with results of theoretical study) leading to excellent electrochemical performance for HER, almost comparable to that of commercial Pt/C.

Electrochemical impedance spectroscopy and Tafel slopes

Based on the above, the reaction kinetics of HER for NPs of Cu₃P, (Cu_{0.83}Co_{0.17})₃P, and for the various sulfur doped NPs in the (Cu_{0.83}Co_{0.17})₃P.S system including commercial Pt/C were studied using electrochemical impedance spectroscopy (EIS). Accordingly, EIS was carried out to determine the charge transfer resistance (R_{ct}) in 0.5 M H₂SO₄ electrolyte solution (pH~0) at (-0.05 V vs RHE) in the frequency range of 100 mHz-100 kHz at 26 °C at an amplitude of 10 mV, using the circuit model R_Ω(R_{ct}Q₁) for fitting the experimental data, where R_Ω is the ohmic resistance, which includes contribution mainly from electrolyte and electrode. Similarly, R_{ct} is charge transfer resistance and Q₁ is the constant phase element representing the contribution from the capacitance behavior of the electrocatalyst surface.

The EIS plot of the electro-catalysts show a well-formed semicircular arc (Fig. 4b–c). The diameter of semi-circular arc is used to determine the charge transfer resistance (R_{ct}). The R_{ct} for all the NPs of the ($Cu_{0.83}Co_{0.17}$)₃P: S system is

significantly lower than that of $(Cu_{0.83}Co_{0.17})_3P$ NPs and pure Cu₃P NPs (Fig. 4b-c and Table 2) clearly reflecting significant improvements in the kinetics of HER (significant decrease in activation polarization) upon the incorporation of the dual dopants, Co and S into the Cu₃P lattice resulting in superior electrochemical activity for HER of all the NPs in the (Cu_{0.83}Co_{0.17})₃P:S system contrasted to that of (Cu_{0.83}Co_{0.17})₃P NPs and pure Cu₃P NPs, respectively. Correspondingly, the R_{ct} for all the NPs of the $(Cu_{0.83}Co_{0.17})_3$ P:S system decreases with increase in S concentration with the lowest value of R_{ct} obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs (~7 Ω cm²), suggesting improvement in reaction kinetics (decrease in activation polarization) and thus, improved electrochemical activity, with increase in S concentration with the highest current value of 17.2 mA cm⁻² at -0.05V vs RHE obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs (exhibiting lowest activation polarization in this study) (Fig. 4b-c and Table 2). It should also be noted that R_{ct} for $(Cu_{0.83}Co_{0.17})_3P:30S$ NPs (~7 Ω cm²) is ninefold lower than that of Cu₃P NPs (~65.29 Ω cm²), five-fold lower than that of $(Cu_{0.83}Co_{0.17})_3P$ NPs (~31.3 Ω cm²) and almost comparable to commercial Pt/C (~6.32 Ω cm²) (Fig. 4b-c and Table 2). Thus, (Cu_{0.83}Co_{0.17})₃P:30S NPs shows outstanding electrochemical performance for HER with the reaction kinetics (activation polarization) being almost similar to that of Pt/C.

The Tafel slope of pure Cu₃P NPs, (Cu_{0.83}Co_{0.17})₃P NPs, (Cu_{0.83}Co_{0.17})₃P:10S NPs, (Cu_{0.83}Co_{0.17})₃P:20S NPs and (Cu_{0.83}Co_{0.17})₃P:30S NPs and commercial Pt/C, calculated from iR_{Ω} corrected Tafel plots (in 0.5 M H₂SO₄), are 96 mV dec⁻¹, 55 mV dec^{-1} , 50 dec^{-1} , 40 mV dec^{-1} , 32 mV dec^{-1} and 31.6 mV dec^{-1} (similar to earlier reports [32,78,79,82,84]), respectively (Fig. 5a-c). The lower Tafel slopes for all the NPs of the (Cu_{0.83}Co_{0.17})₃P: S system corresponding to different S concentrations compared to that of pure Cu₃P NPs and (Cu_{0.83}Co_{0.17})₃P NPs is again a reflection of the superior reaction kinetics of all the NPs of the (Cu_{0.83}Co_{0.17})₃P: S system than that of pure Cu₃P NPs and (Cu_{0.83}Co_{0.17})₃P NPs which is also seen in EIS analysis (Fig. 4b-c). The Tafel slope for (Cu_{0.83}Co_{0.17})₃P: S NPs decreases with increase in S concentration with the lowest value obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs (32 mV dec^{-1}), suggesting clearly an enhancement in the reaction kinetics (increase in number of electrons involved in HER) resulting in superior electrochemical activity for HER, which increases with increase in S concentration with the highest electrochemical response of 17.2 mA cm⁻² at -0.05V vs RHE obtained for $(Cu_{0.83}Co_{0.17})_3P:30S$ NPs (Fig. 5a-c). It is again of interest to note that the Tafel slope of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs (32 mV dec⁻¹) is almost similar to that of commercial Pt/C (31.6 mV dec⁻¹) indicating almost similar reaction kinetics and thus, similar electrochemical activity of (Cu_{0.83}Co_{0.17})₃P:30S NPs and commercial Pt/C (Fig. 5a-c) for HER which is known to primarily proceed through the Volmer-Tafel mechanism for both (Cu_{0.83}Co_{0.17})₃P:30S NPs and commercial Pt/C [21,32]. The Tafel slope of (Cu_{0.83}Co_{0.17})₃P:30S NPs (32 mV dec⁻¹) is the lowest Tafel slope obtained so far compared to other reported non-noble metals based HER electro-catalysts published in the open literature, to the best of our knowledge (Table S1). These results collectively taken again show that the incorporation of dual dopants, Co and S into the Cu₃P lattice offers unique modification of the

Fig. 5 – (a) Tafel plot of pure Cu_3P NPs, (b) Tafel plot of $(Cu_{0.83}Co_{0.17})_3P$ NPs, (c) Tafel plot of $(Cu_{0.83}Co_{0.17})_3P$:S NPs of different S concentration and commercial Pt/C.

electronic structure (as predicted by the first principles abinitio studies discussed above and also seen in XPS analysis) exhibiting significantly lower reaction polarization and lower activation polarization than that of the parent Cu₃P, resulting in excellent electrochemical activity with the highest electrochemical activity of 17.2 mA cm⁻² current density at -0.05V vs RHE obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs, which is almost similar to that of Pt/C (~17.6 mA cm⁻²).

Electrochemical stability test

The long term electrochemical stability of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs is studied by performing chronoamperometry (CA) test wherein the electrode was maintained at constant potential of (-0.05 V vs RHE) and the loss in current density (i.e., electrochemical activity) is studied for the period of 24 h. The CA curve of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs, shown in Fig. 6a, alongside that of commercial Pt/C, depicts negligible loss in current density (~1.6%) at the end of 24 h which is similar to that of commercial Pt/C (~1.5%). The LSV curve obtained after 24 h of exposure of the $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs to the CA test (Fig. 6b) clearly depicts negligible loss in electrochemical activity. The

inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of electrolyte solution (0.5 M H_2SO_4) collected after 24 h of CA test of $(Cu_{0.83}Co_{0.17})_3P$:30S NPs indicates very minimal amount of elements (~0 ppm) having leached out from electrode in the electrolyte solution (Table S6). These results show excellent long term electrochemical stability of $(Cu_{0.83}Co_{0.17})_3P$:30S NPs, under HER operating conditions similar to that of Pt/C.

Electrochemical characterization of $(Cu_{0.83}Co_{0.17})_3P$:30S NPs as HER electro-catalyst in H-type photoelectrochemical (PEC) water splitting cell using $(Sn_{0.95}Nb_{0.05})O_2$:N-600 nanotubes (NTs) as the photoanode

The NPs containing 30 at. % S, namely $(Cu_{0.83}Co_{0.17})_3P$:30S NPs is studied as electro-catalyst for HER in H-type PEC water splitting cell using $(Sn_{0.95}Nb_{0.05})O_2$:N-600 nanotubes (NTs) as the photoanode/working electrode. The photoanode and cathode compartments were separated by Nafion 115 membrane in H-type cell [8]. Chronoamperometry (CA) test was conducted for $(Sn_{0.95}Nb_{0.05})O_2$:N-600 NTs (photoanode) under illumination (100 mW cm⁻²) by applying a constant potential of ~0.75 V (vs RHE) for 24 h using $(Cu_{0.83}Co_{0.17})_3P$:30S NPs (total

Fig. 6 – (a) The variation of current vs time in the chronoamperometry (CA) test of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and commercial Pt/C, performed in 0.5 M H₂SO₄ electrolyte solution at a constant potential of (-0.05 V vs RHE) at 26 °C for 24 h, (b) The iR_Ω corrected linear scan voltammogram (LSV) curve for HER of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs, obtained in 0.5 M H₂SO₄ electrolyte solution at 26 °C using scan rate of 1 mV s⁻¹, before and after 24 h of CA test, (c) Amount of H₂ evolved at cathode as a function of irradiation time for $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and Pt/C as cathode electro-catalyst for HER and $(Sn_{0.95}Nb_{0.05})O_2$:N-600 nanotubes (NTs) as photoanode/working electrode, obtained in 0.5 M H₂SO₄ solution at 26 °C under illumination (100 mW cm⁻²) in chronomaperometry test of $(Sn_{0.95}Nb_{0.05})O_2$:N-600 NTs performed at a constant potential of ~0.75 V (vs RHE) at 26 °C for 24 h, (d) Applied bias photon-to-current efficiency (ABPE) as a function of irradiation time for $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and Pt/C as cathode electro-catalyst for HER and (Sn_{0.95}Nb as photoanode/working electro-catalyst for HER and (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs performed at a constant potential of ~0.75 V (vs RHE) at 26 °C for 24 h, (d) Applied bias photon-to-current efficiency (ABPE) as a function of irradiation time for $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and Pt/C as cathode electro-catalyst for HER and $(Sn_{0.95}Nb_{0.05})O_2$:N-600 nanotubes (NTs) as photoanode/working electrode, obtained in 0.5 M H₂SO₄ solution at 26 °C under illumination (100 mW cm⁻²) in chronomaperometry test of (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs performed at a constant potential of ~0.75 V (vs RHE) as a photoanode/working electrode, obtained in 0.5 M H₂SO₄ solution at 26 °C under illumination (100 mW cm⁻²) in chronomaperometry test of (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs performed at a constant potential of ~0.75 V (vs RHE) at 26 °C for 24 h.

loading = 0.7 mg cm⁻²) as the cathode electro-catalyst for HER in 0.5 M H₂SO₄ electrolyte solution (pH~0) at 26 °C. It should be mentioned that 0.75 V (vs RHE) is chosen for the CA test, since a maximum ABPE of ~4.1% was obtained using (Sn_{0.95}Nb_{0.05}) O₂:N-600 nanotubes (NTs) as semiconductor material for photoanode as mentioned earlier, and Pt as cathode electrocatalyst for HER, as well as reported by us in an earlier publication [8]). During the CA test, the amount of H₂ gas (generated at the cathode) was measured after each 1 h interval using a gas chromatograph (helium as the carrier gas, Agilent 7820A) and further used for the determination of the applied bias photon-to-current efficiency (ABPE). For comparison, the ABPE was also determined using Pt/C (Pt loading = 0.4 mg_{Pt} cm⁻²) as the cathode electro-catalyst, using similar procedure followed for $(Cu_{0.83}Co_{0.17})_3P$:30S NPs.

The amount of H₂ generated at the cathode as a function of irradiation time for $(Cu_{0.83}Co_{0.17})_3P$:30S NPs and Pt/C used as the cathode electro-catalyst, is shown in Fig. 6c. It is note-worthy to see that the amount of H₂ evolved at the cathode using the 30 at. % S containing NPs of $(Cu_{0.83}Co_{0.17})_3P$:30S as

electro-catalyst is almost similar to that of commercial Pt/C. This can again be considered to be due to similar reaction polarization (similar onset overpotential) and similar activation polarization (similar reaction kinetics) for both $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs and commercial Pt/C, as discussed earlier in the LSV studies (Fig. 4a and Table 2) and EIS analysis (Fig. 4b–c and Table 2). Correspondingly, the ABPE is determined using the equation [85–89]:

$$ABPE = \ \frac{\Delta G^{o} \cdot n_{H2} - V.I}{P.A} \ \times \ \text{100}$$

where, $n_{H2} = H_2$ evolution rate (mol sec⁻¹).

 $\Delta G^{o} = Gibbs$ free energy for generating 1 mol of H₂ from water (237130 J mol⁻¹).

P = Total incident power (W cm⁻²).

A = Area irradiated by incident light (cm²).

I = Photocurrent (A).

V = Bias voltage applied (0.75 V υ s RHE) to (Sn_{0.95}Nb_{0.05}) O₂:N-600 NTs (photoanode/working electrode).

The plot of ABPE as function of irradiation time is shown in Fig. 6d. The ABPE obtained using (Cu_{0.83}Co_{0.17})₃P:30S NPs (~4%) is almost similar to that obtained using commercial Pt/C as cathode electro-catalyst for HER (~4.1%). Also, it should be noted that the ABPE of ~4% is obtained using materials (for both, the cathode and the photoanode) completely devoid of any precious metals (e.g. Pt) in this study. Furthermore, the ABPE of ~4% obtained using (Cu_{0.83}Co_{0.17})₃P:30S NPs as HER electro-catalyst and (Sn_{0.95}Nb_{0.05})O₂:N-600 NTs as photoanode in H-type PEC water splitting cell is the highest ABPE obtained thus far in the open published literature compared to other semiconductor materials studied as photoanode for PEC water splitting based on TiO₂, ZnO and Fe₂O₃ to the best of our knowledge [8,10,49–52]. In addition, the minimal loss in ABPE (~1.8%) for (Cu_{0.83}Co_{0.17})₃P:30S NPs at the end of 24 h of irradiation shows excellent electrochemical stability of $(Cu_{0.83}Co_{0.17})_3$ P:30S NPs similar to that of Pt/C (~1.7% loss in ABPE at the end of 24 h) for continuous H₂ production in the PEC water splitting cell used in the current study for both the (Cu_{0.83}Co_{0.17})₃P:30S NPs and Pt/C system using (Sn_{0.95}Nb_{0.05}) O_2 :N-600 NTs as the photoanode.

The present theoretical and experimental study demonstrates excellent electrochemical performance of (Cu_{0.83}Co_{0.17})₃P:30S NPs, almost similar to that of commercial Pt/C in acidic, neutral and basic media. This can be attributed to the introduction of Co and S in the Cu₃P lattice, resulting in novel and unique modification of the electronic structure, as indicated by the first principle studies outlined earlier above (Fig. 1) and confirmed by XPS analysis (Fig. 3a-d). The system correspondingly exhibits onset overpotential as seen in LSV plot (Fig. 4a and Table 2), reaction kinetics (charge transfer resistance) as studied in EIS analysis (Fig. 4b-c and Table 2) and Tafel slope (Fig. 5a-c and Table 2), electrochemical activity in PEC water splitting cell in acidic media (H2 yield and ABPE) (Fig. 6c-d), almost similar to that of commercial Pt/C. These results collectively thus, demonstrate the potential of (Cu_{0.83}Co_{0.17})₃P:30S NPs clearly as a replacement of the state of the art commercial Pt/C and with further system modification it is possible that the system can achieve even superior electrochemical activity for HER than that of Pt/C. A thorough fundamental study for (Cu,Co)₃P:S electro-catalyst material

involving DFT studies and experimental approaches for Codoped Cu₃P with different Co content (10-50 at.%) and Sdoped Cu₃P with different S content (10-50 at.%) to study the surface electronic structure, bulk electronic and electrochemical properties along with testing of the electro-catalysts in 2-electrode PEC water splitting system, long term stability assessment by chronopotentiometry test (at the overpotential of 50 mA/cm², 100 mA/cm² and 200 mA/cm²) and poststability characterization analyses will be planned in the future and reported in the subsequent publications. The present report of its excellent electrochemical performance and stability for HER in both electrolytic water splitting (i.e., water electrolysis) and PEC water splitting indeed is a testimonial of a hallmark breakthrough achieved in the pursuit of identification and development of low cost, highly active and robust non-noble metals based electro-catalyst for HER for replacing the expensive state of the art commercial Pt/C electro-catalyst used at present.

Conclusions

The present study shows that the sulfur and cobalt doped (Cu_{0.83}Co_{0.17})₃P: S nanoparticles (NPs) system serves as a potential cathode electro-catalyst for HER. The system was identified using theoretical first principles studies. The XRD patterns of the synthesized (Cu_{0.83}Co_{0.17})₃P:S NPs clearly indicate the formation of single phase with hexagonal structure (similar to that of Cu₃P). The XPS analysis conducted also showed modification in the electronic structure upon incorporation of Co and S into the Cu₃P lattice, leading to superior electrochemical activity for HER. The present study thus clearly demonstrates (Cu_{0.83}Co_{0.17})₃P:S NPs of different S concentration exhibiting excellent electrochemical activity for HER with onset overpotential of ~10 mV (us RHE) which is similar to that of commercial Pt/C in all three electrolyte conditions of acidic, neutral and basic media and is indeed the lowest obtained so far compared to other reported non-noble metals based HER electro-catalysts in the open literature. The highest electrochemical performance is obtained for (Cu_{0.83}Co_{0.17})₃P:30S NPs, which showed overpotential to reach current density of 100 mA $\rm cm^{-2}$, almost similar to that of commercial Pt/C in acidic, neutral and basic media and lower than other reported non-noble metals based HER electrocatalysts. These results bode well with the results of the theoretical study. Additionally, the $(Cu_{0.83}Co_{0.17})_3P{:}30S\ NPs$ showed excellent electrochemical activity for HER as cathode electro-catalyst in PEC water splitting system using (Sn_{0.95}Nb_{0.05})O₂:N-600 nanotubes (NTs) as photoanode in acidic media. An ABPE od ~4% obtained using (Cu_{0.83}Co_{0.17})₃P:30S NPs is almost similar to that of commercial Pt/C as cathode electro-catalyst for HER (~4.1%) and the highest obtained so far using completely non-noble metals based materials (for cathode and photoanodes based on literature reports for TiO_2 , ZnO and Fe_2O_3), to the best of our knowledge. Furthermore, the (Cu_{0.83}Co_{0.17})₃P:30S NPs exhibit excellent long term electrochemical stability for HER in acidic media similar to that of Pt/C in both water electrolysis and PEC water splitting cell. Hence, the present study demonstrates (Cu_{0.83}Co_{0.17})₃P:30S NPs as potential electro-catalyst for

replacing Pt/C for HER in electrolytic and photoelectrochemical water splitting system due to its excellent electrochemical performance and stability. The results reported here is anticipated to offer significant reduction in the capital cost of electrolytic and PEC water splitting systems for achieving efficient and economic hydrogen generation to address the global energy crisis. It is also likely that this system will ensure sustainable development of modern society utilizing clean non-carbonaceous fuels leading to an energy efficient economy.

Author contributions

P.P.P. and P.N.K. devised the original concept. P.P.P. designed the experiments, synthesized the electro-catalyst materials, prepared the electrodes, performed structural, electrochemical and photoelectrochemical characterization and analyzed electrochemical data. O.I.V. conducted the theoretical analyses. P.M.S collected the XPS data. P.P.P. and B.G. performed SEM-EDX-elemental x-ray mapping and TEM analyses, respectively. P.P.P. analyzed the XPS data. M.K.D., R.K., S.D.G. and P.J made suggestions to the draft components. P. P. P., O.I.V. and P.N.K. wrote the first draft of the paper and all authors participated in the manuscript review and revision. The project is conceived and supervised by P.N.K.

Acknowledgments

Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0001531. PNK acknowledges the Edward R. Weidlein Chair Professorship funds, the Center for Complex Engineered Multifunctional Materials (CCEMM) for procuring the electrochemical equipment and facilities used in this research work and the Pittsburgh Supercomputing Center for providing the computational resources. PNK also acknowledges the support of the National Science Foundation, CBET-Grant 0933141 and CBET-Grant 1511390. Finally, P.N.K. and O.I.V. gratefully acknowledge the Extreme Science and Engineering Discovery Environment (XSEDE) [90] supported by National Science Foundation grant number ACI-1053575, for providing the computational resources needed to complete the theoretical component of the present study.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ijhydene.2018.02.147.

REFERENCES

[1] Nowotny J, Bak T, Chu D, Fiechter S, Murch GE, Veziroglu TN. Sustainable practices: solar hydrogen fuel and education program on sustainable energy systems. Int J Hydrogen Energy 2014;39:4151-7.

- [2] Andrews J, Shabani B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscipl Rev: Energy Environ 2014;3:474–89.
- [3] Marchenko OV, Solomin SV. The future energy: hydrogen versus electricity. Int J Hydrogen Energy 2015;40:3801–5.
- [4] Nicoletti G, Arcuri N, Nicoletti G, Bruno R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers Manag 2015;89:205–13.
- [5] Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quere C, et al. The challenge to keep global warming below 2 [deg]C. Nat Clim Change 2013;3:4–6.
- [6] Patel PP, Velikokhatnyi OI, Ghadge SD, Jampani PH, Datta MK, Hong D, et al. Highly active robust oxide solid solution electro-catalysts for oxygen reduction reaction for proton exchange membrane fuel cell and direct methanol fuel cell cathodes. Int J Hydrogen Energy 2017;42:24079–89.
- [7] Patel PP, Hanumantha PJ, Datta MK, Velikokhatnyi OI, Hong D, Poston JA, et al. WO₃ based solid solution oxide promising proton exchange membrane fuel cell anodeelectro-catalyst. J Mater Chem 2015;3:18296–309.
- [8] Patel PP, Hanumantha PJ, Velikokhatnyi OI, Datta MK, Gattu B, Poston JA, et al. Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – robust photoanodes for hydrogen generation by photoelectrochemical water splitting. Mater Sci Eng: B 2016;208:1–14.
- [9] Patel PP, Datta MK, Velikokhatnyi OI, Kuruba R, Damodaran K, Jampani P, et al. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electrocatalysts. Sci Rep 2016;6.
- [10] Patel PP, Hanumantha PJ, Velikokhatnyi OI, Datta MK, Hong D, Gattu B, et al. Nitrogen and cobalt co-doped zinc oxide nanowires – viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J Power Sources 2015;299:11–24.
- [11] Patel PP, Datta MK, Velikokhatnyi OI, Jampani P, Hong D, Poston JA, et al. Nanostructured robust cobalt metal alloy based anode electro-catalysts exhibiting remarkably high performance and durability for proton exchange membrane fuel cells. J Mater Chem 2015;3:14015–32.
- [12] Patel PP, Datta MK, Jampani PH, Hong D, Poston JA, Manivannan A, et al. High performance and durable nanostructured TiN supported Pt50–Ru50 anode catalyst for direct methanol fuel cell (DMFC). J Power Sources 2015;293:437–46.
- [13] Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, et al. Renewable hydrogen production. Int J Energy Res 2008;32:379–407.
- [14] Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 2014;53:14433–7.
- [15] Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Phys Today 2004;57:39–44.
- [16] Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Accounts Chem Res 1995;28:141–5.
- [17] Winter C-J. Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrogen Energy 2009;34:S1–52.
- [18] Coelho B, Oliveira A, Mendes A. Concentrated solar power for renewable electricity and hydrogen production from water—a review. Energy Environ Sci 2010;3:1398–405.
- [19] Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010;110:6503–70.

- [20] Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogenevolving cathode over the wide range of pH 0–14. J Am Chem Soc 2014;136:7587–90.
- [21] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 2011;133:7296–9.
- [22] Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 2005;127:5308–9.
- [23] Kong D, Wang H, Lu Z, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 2014;136:4897–900.
- [24] Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 2013;135:19186–92.
- [25] Tang H, Dou K, Kaun C-C, Kuang Q, Yang S. MoSe 2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem 2014;2:360–4.
- [26] Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem 2012;124:6235–9.
- [27] Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem 2013;125:13996–9.
- [28] Jiang P, Liu Q, Ge C, Cui W, Pu Z, Asiri AM, et al. CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem 2014;2:14634–40.
- [29] Oyama ST, Gott T, Zhao H, Lee Y-K. Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 2009;143:94–107.
- [30] Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev 2013;113:7981–8065.
- [31] Prins R, Bussell M. Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 2012;142:1413–36.
- [32] Tian J, Liu Q, Liang Y, Xing Z, Asiri AM, Sun X. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl Mater Interfaces 2014;6:20579–84.
- [33] Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 2013;135:9267–70.
- [34] Feng L, Vrubel H, Bensimon M, Hu X. Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys Chem Chem Phys 2014;16:5917–21.
- [35] Popczun EJ, Roske GW, Read CG, Crompton JC, McEnaney JM, Callejas JF, et al. Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis. J Mater Chem 2015;3:5420–5.
- [36] Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 2014;126:5531–4.

- [37] Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 2014;7:2624–9.
- [38] Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, et al. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014;8:11101–7.
- [39] McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem Commun 2014;50:11026–8.
- [40] Xing Z, Liu Q, Asiri AM, Sun X. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal 2014;5:145–9.
- [41] Tian J, Liu Q, Cheng N, Asiri AM, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance threedimensional cathode for generating hydrogen from water. Angew Chem Int Ed 2014;53:9577–81.
- [42] Merki D, Vrubel H, Rovelli L, Fierro S, Hu X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 2012;3:2515–25.
- [43] Bonde J, Moses PG, Jaramillo TF, Norskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 2009;140:219–31.
- [44] Okamoto Y, Tamura K, Kubota T. Edge-differentiating deposition of Co on SiO2-supported MoS2 particles. Chem Commun 2010;46:2748–50.
- [45] Byskov LS, Nørskov JK, Clausen BS, Topsøe H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J Catal 1999;187:109–22.
- [46] Lauritsen JV, Helveg S, Lægsgaard E, Stensgaard I, Clausen BS, Topsøe H, et al. Atomic-scale structure of Co–Mo–S nanoclusters in hydrotreating catalysts. J Catal 2001;197:1–5.
- [47] Shu Y, Oyama ST. Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides. Carbon 2005;43:1517–32.
- [48] Bai J, Li X, Wang A, Prins R, Wang Y. Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. J Catal 2013;300:197–200.
- [49] Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 2011;11:4978–84.
- [50] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 2011;11:3026–33.
- [51] Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite ([small alpha]-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 2011;4:958–64.
- [52] Liu Q, Ding D, Ning C, Wang X. Black Ni-doped TiO 2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int J Hydrogen Energy 2015;40:2107–14.
- [53] Hammer B, Nørskov JK. Theoretical surface science and catalysis—calculations and concepts. Adv Catal 2000;45:71–129.
- [54] Bligaard T, Nørskov JK. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 2007;52:5512–6.
- [55] Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen J, Pandelov S, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc 2005;152:J23–6.
- [56] OLOFSSON O. The crystal structure of Cu 3 P. Acta Chem Scand 1972;26:2777–87.

- [57] Kulesza PJ, Pieta IS, Rutkowska IA, Wadas A, Marks D, Klak K, et al. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochim Acta 2013;110:474–83.
- [58] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86.
- [59] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput Mater Sci 1996;6:15–50.
- [60] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758–75.
- [61] Perdew JP, Yue W. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 1986;33:8800–2.
- [62] Luo Y-R. Comprehensive handbook of chemical bond energies. CRC press; 2007.
- [63] Aitken JA, Ganzha-Hazen V, Brock SL. Solvothermal syntheses of Cu 3 P via reactions of amorphous red phosphorus with a variety of copper sources. J Solid State Chem 2005;178:970–5.
- [64] Pfeiffer H, Tancret F, Bichat M-P, Monconduit L, Favier F, Brousse T. Air stable copper phosphide (Cu 3 P): a possible negative electrode material for lithium batteries. Electrochem Commun 2004;6:263–7.
- [65] Wells A. Structural inorganic chemistry. 5th ed. 1984. Clarendon. Oxford.
- [66] Lin C-M, Sheu H-S, Tsai M-H, Wu B-R, Jian S-R. High pressure induced phase transition in sulfur doped indium phosphide: an angular-dispersive X-ray diffraction and Raman study. Solid State Commun 2009;149:136–41.
- [67] Teng Y, Wang A, Li X, Xie J, Wang Y, Hu Y. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure. J Catal 2009;266:369–79.
- [68] Ma L, Shen X, Zhou H, Zhu J, Xi C, Ji Z, et al. Synthesis of Cu 3 P nanocubes and their excellent electrocatalytic efficiency for the hydrogen evolution reaction in acidic solution. RSC Adv 2016;6:9672–7.
- [69] Pfeiffer H, Tancret F, Brousse T. Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: a probable anode for lithium ion batteries. Electrochim Acta 2005;50:4763–70.
- [70] Wagner C. Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss Chem Soc 1975;60:291–300.
- [71] Abu II, Smith KJ. The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6dimethyldibenzothiophene. J Catal 2006;241:356–66.
- [72] Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O'Shea K, et al. Innovative visible light-activated sulfur doped TiO 2 films for water treatment. Appl Catal B Environ 2011;107:77–87.
- [73] Li Y, Zhang Y, Zhu X, Wang Z, Lü Z, Huang X, et al. Performance and sulfur poisoning of Ni/CeO 2 impregnated La 0.75 Sr 0.25 Cr 0.5 Mn 0.5 O $3-\delta$ anode in solid oxide fuel cells. J Power Sources 2015;285:354–9.
- [74] Wilson AD, Newell RH, McNevin MJ, Muckerman JT, Rakowski DuBois M, DuBois DL. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc 2006;128:358–66.
- [75] Wilson AD, Shoemaker RK, Miedaner A, Muckerman JT, DuBois DL, DuBois MR. Nature of hydrogen interactions with

Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc Natl Acad Sci Unit States Am 2007;104:6951—6.

- [76] Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-Only hydrogenase from desulfovibrio desulfuricans. J Am Chem Soc 2001;123:1596–601.
- [77] Patel PP, Hanumantha PJ, Datta MK, Velikokhatnyi OI, Hong D, Poston JA, et al. Cobalt based nanostructured alloys: versatile high performance robust hydrogen evolution reaction electro-catalysts for electrolytic and photoelectrochemical water splitting. Int J Hydrogen Energy 2017;42:17049–62.
- [78] Gao M-R, Lin Z-Y, Zhuang T-T, Jiang J, Xu Y-F, Zheng Y-R, et al. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H 2 production. J Mater Chem 2012;22:13662–8.
- [79] Shi Z, Wang Y, Lin H, Zhang H, Shen M, Xie S, et al. Porous nanoMoC@ graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Chem 2016;4:6006–13.
- [80] Li J-S, Wang Y, Liu C-H, Li S-L, Wang Y-G, Dong L-Z, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 2016;7.
- [81] Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, et al. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew Chem 2015;127:6423-7.
- [82] Xu G-R, Hui J-J, Huang T, Chen Y, Lee J-M. Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J Power Sources 2015;285:393–9.
- [83] Tang YJ, Gao MR, Liu CH, Li SL, Jiang HL, Lan YQ, et al. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem Int Ed 2015;54:12928–32.
- [84] Vigil JA, Lambert TN. Nanostructured cobalt phosphidebased films as bifunctional electrocatalysts for overall water splitting. RSC Adv 2015;5:105814–9.
- [85] Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 2010;25:3–16.
- [86] Bolton JR. Solar photoproduction of hydrogen: a review. Sol Energy 1996;57:37–50.
- [87] Liao C-H, Huang C-W, Wu J. Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2012;2:490–516.
- [88] Coridan RH, Nielander AC, Francis SA, McDowell MT, Dix V, Chatman SM, et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci 2015;8:2886–901.
- [89] Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, et al. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Adv Energy Mater 2016;6.
- [90] Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng 2014;16:62–74.