Publication details

Authors: Datta, M. K.; Chou, D. T.; Hong, D. H.; Saha, P.; Chung, S. J.; Lee, B.; Sirinterlikci, A.; Ramanathan, M.; Roy, A.; Kumta, P. N. 
Title: Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying 
Type: Journal Article 
Publisher: Materials Science and Engineering B-Advanced Functional Solid-State Materials 
Year: 2011 
Volume: 176 
Issue: 20 
Start Page: 1637 
End Page: 1643 
DOI: 10.1016/j.mseb.2011.08.008 
Abstract: Room temperature solid state diffusion reaction induced by mechanical alloying (MA) of elemental blends of Mg, Zn and Ca of nominal composition 60 at.% Mg-35 at.% Zn-5 at.% Ca has been studied. Formation of fully amorphous structure has been identified after 5 h of MA performed in a SPEX 8000M shaker mill, with milling continued up to 8 h to confirm the formation of homogeneous amorphous phase. Thermal stability of the amorphous phase has been studied using differential scanning calorimetry (DSC) and isothermal heat treatment at different temperatures. The amorphous powder consolidated using cold isostatic pressing (CIP) showed an envelope density similar to 80% of absolute density, which increased to an envelope density similar to 84% of absolute density after sintering at an optimized temperature of similar to 523K for 9 h. Electrochemical bio-corrosion testing of the CIP compacted amorphous pellet as well as the sintered pellet performed in Dulbecco's Modified Eagle Medium, showed improved corrosion resistance in comparison to the as-cast pure Mg. Cytotoxicity testing of the CIP compacted amorphous pellet, performed using the WIT assay with MC3T3 osteoblastic cells, showed low cytotoxicity in comparison to the as-cast pure Mg. (C) 2011 Published by Elsevier B.V. 
Keywords: mg-based alloy, amorphous alloy, mechanical alloying, thermal stability, bio-corrosion, cytotoxicity, microstructure, implants, glasses, bone